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Spectral statistics of thek-body random-interaction model

Mark Srednicki
Department of Physics, University of California, Santa Barbara, California 93106

~Received 9 July 2002; published 30 October 2002!

We reconsider the question of the spectral statistics of thek-body random-interaction model, investigated
recently by Benet, Rupp, and Weidenmu¨ller, who concluded that the spectral statistics are Poissonian. The
binary-correlation method that these authors used involves formal manipulations of divergent series. We argue
that Borel summation does not suffice to define these divergent series without further~arbitrary! regularization,
and that this constitutes a significant gap in the demonstration of Poissonian statistics. Our conclusion is that
the spectral statistics of thek-body random-interaction model remains an open question.

DOI: 10.1103/PhysRevE.66.046138 PACS number~s!: 02.50.Ey, 05.45.2a, 21.10.2k, 24.60.Lz
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I. INTRODUCTION

In recent work, Benet, Rupp, and Weidenmu¨ller ~hereafter
BRW! @1,2# have considered the spectral statistics ofk-body
random interaction models@3–5#. These are models of fer
mions ~usually; boson versions can also be studied@6#! in
which there are, single-particle states occupied by a total
m particles. The models are specified by Hamiltonians of
form

Hk5 (
1< j 1, j 2,•••, j k<,
1< i 1, i 2, . . . , i k<,

Vj 1 , . . . ,j k ,i 1 , . . . ,i k
aj 1

†
•••aj k

† ai k
•••ai 1

,

~1!

where thea†’s and a’s are creation and annihilation oper
tors, and theV’s are ~for the case of the unitary ensembl!
complex numbers that obey

Vj 1 , . . . ,j k ,i 1 , . . . ,i k
5Vi 1 , . . . ,i k , j 1 , . . . ,j k

* . ~2!

Each independent component is a Gaussian random var
with mean zero and variancev0k

2 ,

Vj 1 , . . . ,j k ,i 1 , . . . ,i k
Vj

18 , . . . ,j
k8 ,i

18 , . . . ,i
k8

5v0k
2 d j 1i

18
•••d j ki

k8
d i 1 j

18
•••d i kj

k8
. ~3!

The overbar denotes averaging over the ensemble, andv0k is
a normalization constant that sets the energy scale. In
paper, for pedagogical simplicity, we will restrict our atte
tion to the unitary ensemble.

These models can be viewed as caricatures of com
systems of interacting particles, such as nuclei, multielec
atoms, or quantum dots. The most physically interesting c
is k52: H2 can be thought of as representing two-bo
interactions among a set ofm particles occupying, degen-
erate single-particle states.

In their work, BRW analyzed the spectral statistics
these models, and found that they are Poissonian for,@m
@k. This is something of a surprise; numerical simulatio
of thek52 model have generally found Wigner-Dyson spe
tral statistics~see, e.g.,@7,8#!. Even more surprising, the
proof of this offered by BRW extends trivially to the case
1063-651X/2002/66~4!/046138~8!/$20.00 66 0461
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nondegenerate single-particle levels specified byH5H1
1H2, for arbitrary values ofv02/v01 @9#.

This is counterintuitive on at least two levels. First, ma
ematically, one would naturally expect that determining t
spectral statistics ofH11H2 would be a much harder prob
lem than it is for eitherH1 or H2 alone. Second, physically
we expect this model to capture the essential physics o
chaotic many-body system~with two-body interactions!, just
as a single random matrix is often a good model of a cha
few-body system. According to the Bohigas-Gianno
Schmit conjecture@10# ~see also@11#!, a classically chaotic
system should exhibit Wigner-Dyson statistics at sufficien
high energy~irrespective of the number of degrees of fre
dom!. If the BRW result is correct, we must then conclu
that either the BGS conjecture is false for many-body s
tems, or that the two-body random-interaction model do
not correctly capture this aspect of the physics of these
tems.

In this paper we will show that there is in fact a gap in t
BRW proof, and that this gap is not easily bridged. Thus,
will argue, Wigner-Dyson statistics for these models is s
an open possibility.

In Sec. II we review and expand the analysis of BR
@1,2#, and explain how their proof of Poissonian spectral s
tistics might fail to hold. In Sec. III we specialize in the ca
k51 ~where the detailed analysis simplifies! and show that,
within the context of the binary correlation method used
BRW, the proof does break down in the manner suggeste
Sec. II. However, the binary correlation method is not exa
and the appropriate conclusion is that one must go bey
this approximation to obtain a reliable evaluation of the sp
tral statistics of these models. We elaborate on this furthe
Sec. IV.

II. THE BINARY CORRELATION METHOD

We begin with the resolvent

G~z!5tr
1

z2H
, ~4!

where tr denotes the normalized trace (tr151) over states of
m particles. BRW compute the connected correlation fu
tion
©2002 The American Physical Society38-1
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R~z1 ,z2!5G~z1!G~z2!2G~z1! G~z2!. ~5!

Then, since the density of statesr(E) is given by

r~E!5
1

2p i
@G~E2 i«!2G~E1 i«!#, ~6!

whereE is real and« is a positive infinitesimal, we have

r~E1!r~E2!2r~E1! r~E2!

5
1

~2p!2 @R~z1
1 ,z2

2!1R~z1
2 ,z2

1!2R~z1
1 ,z2

1!

2R~z1
2 ,z2

2!#, ~7!

where zi
65Ei6 i«. Thus, we can extract the connect

density-density correlation~which provides information on
the spectral statistics! from R(z1 ,z2), provided we can
evaluateR(z1 ,z2) with both z1 andz2 on either side of the
real axis.

To computeR(z1 ,z2), BRW expand in powers ofH,

G~z1!G~z2!5(
r 50

`

(
s50

`
1

z1
r 11z2

s11
tr~Hr !tr~Hs!. ~8!

The ensemble average vanishes unlessr 1s is even, and, in
this case, Wick’s theorem can be used to express it as a
over (r 1s21)!! pairwise contractions ofV’s. Each contrac-
tion that occurs inside one of the two traces can be shown@2#
to yield a factor ofv0k

2 Lk , whereLk is a calculable numbe
~given below!, provided the total number of these contra
tions is much less than,. This is the essence of the bina
correlation method, introduced by Mon and French@5# ~see
also @12#!. It is convenient to choosev0k so thatv0k

2 Lk51;
then we have

v0k
225Lk5S m

k D S ,2m1k

k D . ~9!

It remains to count the total number of contractions with
each trace, and to evaluate the contractions across the
traces. Performing the first task yields@2#

R~z1 ,z2!5 (
n51

`

gn~z1!gn~z2!Tn , ~10!

where

gn~z!5 (
p50

`
~2p21!!!

z2p1n11 S n12p

n D ~11!

and

Tn5tr~Hn!tr~Hn!; ~12!

the double overbar means that all contractions ofV’s are to
involve oneV from each of the two traces. Equations~10!–
~12! are equivalent to Eq.~68! of @2#.
04613
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BRW show thatTn;,2kn for ,@m@k, and so conclude
thatR(z1 ,z2) vanishes in the,→` limit; this is indicative of
Poissonian spectral statistics. However, this conclusion
suspect if we do not first understand the convergence p
erties of the series in Eq.~10!. To see why this is necessar
consider the mathematical example

S5 (
n51

`
n!

,n , ~13!

where , is a positive integer. Clearly, in the limit,→`,
each term of this series vanishes, and so it is tempting
conclude thatS50. However, we can evaluateS by Borel
summation. We use

n! 5E
0

`

dte2ttn ~14!

in Eq. ~13! and do the sum to get

S5E
0

`

dte2t
t

,2t
. ~15!

This integral is not defined for positive real,. We could
attempt to define it by analytic continuation, but there wou
still be an ambiguity, corresponding to whether the posit
real axis is approached from above or below. More imp
tantly, in our case, is a positive integer that counts th
number of single particle states; therefore it does not seem
make sense to analytically continue to complex,.1 Our con-
clusion in this case would be thatS is simply not defined by
the Borel procedure. We wish to examine whether the sa
problem arises for the series in Eq.~10!.

The series forgn(z) in Eq. ~11!, on the other hand, can b
defined for anyz with Imz5” 0 by Borel summation followed
by analytic continuation. To demonstrate this, we begin w
the combinatoric identities

S n12p

n D 5
~n12p!!

n! ~2p!!
and ~2p21!!! 5

~2p!!

2pp!
,

~16!

and so

gn~z!5
1

n!zn11 (
p50

` S 1

2z2D p ~n12p!!

p!
. ~17!

We now use Eq.~14! with n→n12p to get

1One could raise the same objection to dimensional regulariza
in quantum field theory, but there the results can be verified b
variety of different and more physically motivated schemes.
8-2



le

e

m

-

s

al

alu-
l-
q.
the

tly.

Eq.
m
a-

-

the
sim-

on
.

and
ct

SPECTRAL STATISTICS OF THEk-BODY RANDOM- . . . PHYSICAL REVIEW E 66, 046138 ~2002!
gn~z!5
1

n!zn11 (
p50

` E
0

`

dte2tS t2

2z2D p tn

p!

5
1

n!zn11E0

`

dte2ttnet2/2z2
. ~18!

The integral converges provided Rez22,0. This condition is

satisfied forz56 i uzueif with 2 1
4 p,f,1

1
4

p. We now

rotate thet contour in the complext plane so that it runs
along a straight line from zero to complex infinity at an ang
of f relative to the positive real axis. Then we sett5teif,
wheret is real and runs from zero to infinity. We now hav

gn~z!5
ei (n11)f

n! ~6 i !n11uzun11ei (n11)f

3E
0

`

dte2teif
tne2t2/2uzu2, ~19!

where the phase in the numerator of the prefactor co
from the change of variablet→teif, and the phase in the
denominator comes fromz56 i uzueif. We now change the
integration variable tou5t/uzu to get

gn~z!5
~7 i !n11

n! E
0

`

due2uuzueif
une2u2/2

5
~7 i !n11

n! E
0

`

due6 izuune2u2/2. ~20!

This integral converges for allz, and so constitutes an ana
lytic continuation of Eq.~18!; the6 symbol should be inter-
preted as the sign of Imz. Thusgn(z) is discontinuous acros
the real axis, and if we takez5z65E6 i«, we get

gn~z6!5
~7 i !n11

n! E
0

`

due6 iEuune2u2/2. ~21!

We also note that, from our Eq.~11! and Eq.~65! of @2#,

G~z!5g0~z!. ~22!

Then, from Eq.~6! and Eq.~21!, we have

r~E!5
1

2p i
@g0~z2!2g0~z1!#

5
1

2pE0

`

du~e2 iEu1e1 iEu!e2u2/2

5
1

A2p
exp~2E2/2!. ~23!

This is the classic result of Mon and French@5#: the
ensemble-averaged density of states of thek-body random-
interaction model is Gaussian.

Returning toR(z1 ,z2), we use Eqs.~10! and ~20! to get
04613
es

R~z1
1 ,z2

6!57E
0

`

dudvei (E1u6E2v)e2(u21v2)/2F~7uv !,

~24!

where we have defined

F~y![ (
n51

`
yn

~n! !2 Tn . ~25!

We see that, in order for bothR(z1
1 ,z2

1) andR(z1
1 ,z2

2) to be
well defined,F(y) must be free of singularities on the re
axis ~positive or negative!. Only then can we perform the
integrals overu and v in Eq. ~24! for both R(z1

1 ,z2
1) and

R(z1
1 ,z2

2) without further~arbitrary! regularization.
To see whether or not this obstacle arises, we must ev

ate Tn . Here we have an immediate difficulty. We have a
ready invoked the binary correlation approximation in E
~11!; the terms in this series receive corrections when
summation indexp becomes comparable to,, and there is
no straightforward way to calculate these corrections exac
Similarly, in Sec. III we will evaluateTn ~for k51), but our
method will requiren!,. It is therefore unsuitable for reli-
ably determining the asymptotic behavior of the series in
~25!. Still, it is worthwhile to see whether or not the proble
of a singularity on the real axis arises within this approxim
tion. We therefore turn to the calculation ofTn for k51.

III. ANALYSIS FOR kÄ1

We specialize in the casek51 ~and drop the correspond
ing ‘‘1’’ subscripts!:

H5(
j ,i

Vji aj
†ai , ~26!

with

Vji Vj 8 i 85v0
2d j i 8d i j 8 . ~27!

Of course, we already know the answer for this case:
spectral statistics are Poissonian, because the spectrum
ply consists of the linear sum of them single-particle ener-
gies that are obtained by diagonalizing the,3, Hermitian
matrix V. These single-particle energies obey Wigner-Dys
statistics, but their sums~for m@1) obey Poisson statistics
However, the binary correlation method can still be used,
it is important to see whether or not it gives the corre
answer~or any answer at all!.

We first introduce some shorthand notation. LetI
5$ i 1 , . . . ,i n% andJ5$ j 1 , . . . ,j n%; let

d I ,J5d i 1 j 1
•••d i nj n

. ~28!

Let P, Q, andR denote permutations of then indices of I.
Then, from Eq.~3!, we can write
8-3
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~Vj 1i 1
•••Vj ni n

!~Vj
18 i

18
•••Vj

n8 i
n8
!5v0

2n(
R

d I ,RJ8dJ,RI8 .

~29!

Another useful bit of shorthand is

AJ
†AI5aj 1

† ai 1
•••aj n

† ai n
. ~30!

Thus Eq.~12! becomes

Tn5v0
2n(

R
(

IJI 8J8
d I ,RJ8dJ,RI8tr~AJ

†AI !tr~AJ8
† AI 8!. ~31!

The trace is aU(,) invariant operation, and so we must ha

tr~AJ
†AI !5(

P
CPdJ,PI ~32!

for some set of coefficientsCP . Substituting this expansion
into Eq. ~31!, we get

Tn5v0
2n (

P,Q,R
CPCQ (

IJI 8J8
d I ,RJ8dJ,RI8dJ,PIdJ8,QI8

5v0
2n (

P,Q,R
CPCQ(

I
d I ,RQR̄PI , ~33!

whereR̄ is the inverse ofR.
The expression( Id I ,PI can be evaluated in terms of th

cycles ofP. Consider, for example, the permutation 2431
1234; it contains one cycle of length one~since 3 remains in
its original position!, and one cycle of length three~since 1 is
replaced by 2, 2 is replaced by 4, and 4 is replaced by 1!. Let
gc(P) denote the number of cycles of lengthc in permuta-
tion P; for our example,g15g351 andg25g450. Since
each element of any permutation is in exactly one cycle,
have (c51

n gc(P)c5n. In ( Id I ,PI , each cycle ofP ulti-
mately results in a factor of( id i i 5,. Thus we have

(
I

d I ,PI5,(cgc(P), ~34!

and hence

Tn5v0
2n (

P,Q,R
CPCQ,(cgc(RQR̄P). ~35!

So far we have made no approximations in our evalua
of Tn . We now notice that, for,@1, the dominant term on
the right-hand side of Eq.~35! is the one with the larges
value of (cgc(RQR̄P). This occurs wheng15n and gc

50 for 2<c<n, which in turn impliesRQR̄P5I , or Q

5R̄P̄R. Thus we have

Tn>v0
2n,n(

P,R
CPCR̄P̄R , ~36!

where> denotes equality in the limit of large,.
04613
f
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Next we must evaluateCP . Starting with Eq.~32!, we set
J5QI and sum overI to get

(
I

tr~AQI
† AI !5(

P
CP(

I
dQI,PI

5(
P

CP,(cgc(Q̄P)

>CQ,n. ~37!

To get the last line, we used the same large-, argument that
gave us Eq.~36!.

Now we need to evaluate( I tr(API
† AI). To do so, imagine

rearranging thea†’s so that their indices are in the sam
order as thea’s, and interleaved among them in the standa
pattern of Eq.~30!. Sinceai

†aj
†52aj

†ai
† , we see that, before

accounting for the presence of thea’s, rearranging thea†’s in
this way will yield a factor of (21)P. Passinga†’s through
a’s yields Kronecker deltas, sinceaiaj

†52(aj
†ai2d i j ), but

no possibility of an extra overall minus sign, since the to
number of exchanges ofa†’s with a’s is always even. Let us
temporarily ignore the Kronecker deltas. Then, once all
a†’s have been put next to their partnera’s in the standard
pattern, we have( iai

†ai5m. Thus, ignoring the Kronecke
deltas generated by movinga†’s past a’s, we haveCP5
(21)Pmn.

For n!,, most of the Kronecker delta’s can indeed
neglected; the exception occurs when one of them has
identical indices, leading to( id i i 5,. To account for these
dominant Kronecker deltas, we first note that, for a giv
permutationP, g1(P) is the number of elements that a
left in the same place byP, and these contribute no Kro
necker deltas. Letr (P) be the number of elements that a
moved to the right of their original positions byP; only these
a†’s need to pass through their partnera’s on being returned
to the standard order. For these, the factor ofm must be
replaced bym2,. Finally, the number of elements that a
moved to the left of their original positions byP is n
2g1(P)2r (P), and these contribute no large Kroneck
deltas on being returned to the standard order. Thus we h

CP>~21!P,2nmg1(P)mn2g1(P)2r (P)~m2, !r (P) ~38!

for n!,.
Next we notice that the inverse permutationP̄ has the

counts of the left- and right-moving elements exchang
Thus,

CP̄>~21!P,2nmg1(P)mr (P)~m2, !n2g1(P)2r (P). ~39!

Then, using the fact that (21)P andg1(P) are each invari-
ant under unitary transformations ofP, we have

CR̄P̄R>~21!P,2nmg1(P)mr (R̄PR)

3~m2, !n2g1(P)2r (R̄PR). ~40!

Setting Eqs.~38! and ~40! into Eq. ~36!, we get
8-4
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Tn>v0
2n@m~m2, !#n,2n

3(
P,R

S m

m2, D g1(P)2r (P)1r (R̄PR)

. ~41!

The convention of Eq.~9! with k51 yields v0
2n@m(m

2,)#n5(21)n. Then we can write

Tn /~n! !2>,2nMn„f /~12 f !…, ~42!

wheref 5m/, is the filling fraction, and we have defined th
function

Mn~x![
~21!n

~n! !2 (
P,R

~2x!g1(P)2r (P)1r (R̄PR). ~43!

Remarkably, it is possible to evaluateMn(x) exactly for ar-
bitrary n without performing the sum over the permutatio
P andR in Eq. ~43! explicitly. This calculation is given in the
Appendix. We find thatMn(x) is everywhere positive and
convex; it diverges asx→0 andx→1`, and has a mini-
mum betweenx50 and x51. While we are not able to
evaluate the asymptotic form ofMn(x) analytically, numeri-
cal evaluation reveals that, for largen,

Mn~x!;nln, ~44!

where l is a number that depends onx; if x is real and
positive, so isl. Using Eqs.~42! and ~44! in Eq. ~25!, we
find

F~y!;
ly/,

~12ly/, !2 , ~45!

which obviously has a singularity on the positive real axis
y51,/l. Hence the integral in Eq.~24! for R(z1

1 ,z2
2) is

not well defined. Therefore, we argue, the binary correlat
method fails to give us the density-density correlation fu
tion.

IV. CONCLUSIONS

It is significant that, while we cannot computeR(z1
1 ,z2

2)
by the binary correlation method, wecan compute
R(z1

1 ,z2
1). In this case~at least fork51), there is no sin-

gularity in the integrand in Eq.~24!, and so we can complet
the integrals, take the,→` limit, and conclude that
R(z1

1 ,z2
1)5R(z1

2 ,z2
2)* 50. This is consistent with othe

approaches to the computation of this spectral correla
function. For example, in the periodic-orbit approach to c
otic systems, one finds~see, e.g.,@13#!

G~z6!5(
p.o.

wpe7 iSp /\e2«Tp, ~46!

whereSp is the action of the orbit~including the contribution
of the Maslov phase!, Tp is its period, andwp is the
Gutzwiller weight factor. The key point is that, in the limit o
small \, G(z1

1)G(z2
1) contains only large@2p) phases,

and so summing the orbits should give zero. On the ot
04613
t

n
-

n
-

er

hand,G(z1
1)G(z2

2) has negative phases from the first fact
and positive from the second, so cancellations can occu
the most straightforward approach~the so-called diagona
approximation!, one simply keeps only those terms with a
exact cancellation. This is adequate for computing
density-density correlation function at largeuE12E2u; for
chaotic systems, it is nonzero, and agrees with the Wign
Dyson prediction of random-matrix theory. Thus, for th
k-body random-interaction model, the binary-correlati
method correctly and unambiguously gives usR(z1

1 ,z2
1)

50, but, as we have argued, formal manipulations of div
gent series are not adequate for extending this resul
R(z1

1 ,z2
2). We have seen explicitly how the binary

correlation approximation fails to give us a series f
R(z1

1 ,z2
2) that can be evaluated by Borel summation in t

casek51.
It is important to remember, though, that the binary c

relation approximation breaks down precisely where we w
to apply it: when the number of contractions approaches
number of single-particle levels. Thus, to reach a firm co
clusion one way or the other, we are forced to go beyond
approximation. At the present time, doing so appears
present a severe challenge to the available technologies

One of these technologies, also investigated by BRW
the supersymmetric sigma model@14#. BRW found that, at
the tree and one-loop levels, the sigma model pred
Wigner-Dyson statistics fork!m!,, with corrections that
go to zero as 1/,. Unfortunately, this does not settle th
matter, because this prediction also applies tok51, where it
is known to be false. One must therefore presume t
higher-loop corrections are important.

Thus the only conclusion that seems completely safe
this juncture is a disappointing one: the nature of the spec
statistics of thek-body random-interaction model remains a
unsolved problem.
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APPENDIX

We wish to evaluate

~21!n~n! !2Mn~2x!5(
P,R

xg1(P)2r (P)1r (R̄PR), ~A1!

whereP andR are permutations ofn elements,g1(P) is the
number of elements left in their original positions byP, and
r (P) is the number of elements that are moved to the righ
their original positions byP. For small values ofn, we can
8-5
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perform this sum over (n!) 2 terms explicitly. We are, how-
ever, interested in its behavior for largen, and so this strat-
egy quickly becomes untenable.

Let us warm up by computing

Rn~x!5(
P

xr (P). ~A2!

Let Nn,r be the number of permutations ofn elements in
which exactlyr of the elements move to the right. Then

Rn~x!5 (
r 50

n21

Nn,rx
r . ~A3!

We can computeNn,r by the method of inclusion and exclu
sion@15#. Let Sn,r be the number of permutations in whichat
least r elements move to the right. Then@15#

Nn,r5 (
k50

n2r

~21!kS r 1k

k DSn,r 1k . ~A4!

To obtainSn,r , let us first count the number of permutatio
in which r specificelements move to the right, irrespective
what happens to the remaining elements. Actually, since
conventionally count from left to right, it is slightly mor
calculationally convenient to count the number of permu
tions that mover specific elements to the left, rather than
the right; clearly, by left-right symmetry, the choice of dire
tion is irrelevant to the count. So, letAn,i 1

be the number of

permutations in which thei 1
th element moves to the left

There arei 121 possible places for thei 1
th element to go, and

(n21)! permutations of the remaining elements; thus

An,i 1
5~ i 121!~n21!!. ~A5!

Similarly, let An,i 1 , . . . ,i r
with i 1,•••, i r be the number of

permutations in which all the named elements move to
left; by a similar argument, we have

An,i 1 , . . . ,i r
5~ i 121!~ i 222!•••~ i r2r !~n2r !!. ~A6!

Now Sn,r is given by the sum over all possible values of t
i ’s of An,i 1 , . . . ,i r

:

Sn,r5 (
i r5r

n

••• (
i 252

i 321

(
i 151

i 221

An,i 1 , . . . ,i r

5~n2r !! (
i r5r

n

~ i r2r !••• (
i 252

i 321

~ i 222! (
i 151

i 221

~ i 121!

5~n2r !! (
j r50

n2r

j r••• (
j 250

j 3

j 2 (
j 150

j 2

j 1 , ~A7!

where, in the last line,j a5 i a2a. Equations~A3!, ~A4!, and
~A7! give usRn(x). The first few of these polynomials are
04613
e

-

e

R1~x!51,

R2~x!511x,

R3~x!5114x1x2,

R4~x!51111x111x21x3,

R5~x!51126x166x2126x31x4. ~A8!

Also, it turns out to be convenient later if we adopt the co
vention

R0~x!51/x. ~A9!

Now consider(Rxr (R̄PR) for fixed P. Let P belong to
cycle classC, specified by the numbersgc of cycles of length
c, with (c51

n cgc5n. The permutationR̄PR belongs to the
same class~since class is preserved by unitary transform
tions!, and furthermore each permutation in the class appe
equally often asR is varied over the group. Thus

(
R

xr (R̄PR)5
n!

NC
(
PPC

xr (P), ~A10!

where

NC5
n!

)
c51

n

cgcgc!

~A11!

is the number of permutations in classC @15#. Let Ñc,r be the
number of permutations of the elements in a particular cy
of length c in which exactlyr of the elements in this cycle
move to the right. A cycle can be specified by an ordering
its elements with the smallest first; thus a cycle of lengthc
can be mapped to a permutation of the remainingc21 ele-
ments. This mapping can be shown to implyÑc,r
5Nc21,r 21. Thus,

(
r 51

c21

Ñc,rx
r5 (

r 51

c21

Nc21,r 21xr5 (
s50

c22

Nc21,sx
s115xRc21~x!.

~A12!

The convention of Eq.~A9! correctly treats the casec51.
Also, the number of ways of assigning elements to the cyc
is

NA5
n!

)
c51

n

~c! !gcgc!

. ~A13!

Thus
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(
PPC

xr (P)5NA )
cycles

xRc21~x!

5NA)
c51

n

@xRc21~x!#gc5n! )
c51

n
1

gc!
FxRc21~x!

c! Ggc

.

~A14!

Therefore, by Eqs.~A10!, ~A11!, and~A14!,

(
R

xr (R̄PR)5n! )
c51

n FxRc21~x!

~c21!! Ggc

. ~A15!

Now we can write
on

04613
~21!n~n! !2Mn~2x!5(
P,R

xg1(P)2r (P)1r (R̄PR)

5(C (
PPC

xg1(P)2r (P)(
R

xr (R̄PR).

~A16!

The sum overR is given by Eq.~A15!, and the sum over
PPC is given by Eq.~A14! with xRc21(x) replaced by
xdc121Rc21(1/x). The sum over classes is equivalent to
sum over all possible values of eachgc with the constraint
that(c51

n cgc5n. This is most easily treated via a generati
function

M~x,z!5 (
n50

`

Mn~x!zn. ~A17!
Then, from Eqs.~A14!–~A17! we have

M~x,z!5 (
gc50

`

)
c51

`
1

gc!
F ~2z!c~2x!dc1Rc21~2x!Rc21~21/x!

c! ~c21!! Ggc

5expF(
c51

`
~2z!c~2x!dc1Rc21~2x!Rc21~21/x!

c! ~c21!! G . ~A18!
f

w-

ose

ted
The expansion of Eq.~A18! in powers ofz yields Mn(x) as
the coefficient ofzn. The results for smalln are

M1~x!5x,

M2~x!5~11x2!/2,

M3~x!5~1/x2217x12x3!/~2!3! !,

M4~x!5~1/x228/x148232x149x216x4!/~3!4! !.
~A19!

We have verified this procedure for computingMn(x) up
throughn57 by comparison with the brute-force summati
of the right-hand side of Eq.~A1!.

It is tempting to conclude from Eq.~A19! that, in the limit
of smallx, we can takeMn(x)5x2(n22)/„n!(n21)!…. Small
x corresponds to small filling fractionf 5m/,, which is what
we want if we are interested in the limit,→` with m fixed.
This limiting form for Mn(x) would lead to convergence o
the series in Eq.~25! for all y, with no singularities on the
real axis, thus apparently validating the BRW result. Ho
ever, including the first correction yields

Mn~x!5x2(n22)@12~2n22n!x1•••#/„n! ~n21!! …,
~A20!

and so we see that we must havex!22n before the first term
alone is an adequate approximation. Instead, for the purp
of determining the convergence of the series in Eq.~25!, we
should take the limit of largen with x held fixed. We have
not found a way to do this analytically, and so have resor
to numerical methods. For a given value ofx, we can evalu-
ateMn(x) up to aroundn5500 from Eq.~A18! in a reason-
able amount of computation time. We find, forx50.001,
0.01, 0.1, 0.5, and 1.0, that the behavior ofMn(x) for n
.10 is very well fit by Eq.~44!, with l517.4, 3.28, 0.797,
0.435, and 0.405, respectively.
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