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Spectral statistics of thek-body random-interaction model
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We reconsider the question of the spectral statistics okthedy random-interaction model, investigated
recently by Benet, Rupp, and Weidenlleg who concluded that the spectral statistics are Poissonian. The
binary-correlation method that these authors used involves formal manipulations of divergent series. We argue
that Borel summation does not suffice to define these divergent series without fartiigrary) regularization,
and that this constitutes a significant gap in the demonstration of Poissonian statistics. Our conclusion is that
the spectral statistics of tHebody random-interaction model remains an open question.
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[. INTRODUCTION nondegenerate single-particle levels specified Hby: H
+H,, for arbitrary values ofvg,/vg; [9].
In recent work, Benet, Rupp, and Weiderteu(hereafter This is counterintuitive on at least two levels. First, math-

BRW) [1,2] have considered the spectral statistickfiody  ematically, one would naturally expect that determining the
random interaction model8—5]. These are models of fer- spectral statistics dfi; +H, would be a much harder prob-
mions (usually; boson versions can also be studiéfj in lem than it is for eitheH, or H, alone. Second, physically,
which there are single-particle states occupied by a total of we expect this model to capture the essential physics of a
m particles. The models are specified by Hamiltonians of the&haotic many-body systefwith two-body interactions just
form as a single random matrix is often a good model of a chaotic
few-body system. According to the Bohigas-Giannoni-
Schmit conjecturg10] (see alsd11]), a classically chaotic

Hi 1sj1<j2;~<jks( Vig @i 3808 system Shou_ld eXthI'F Wigner-Dyson statistics at sufficiently
1<ig<ip<...<ip=¢ high energy(irrespective of the number of degrees of free-

(1)  dom). If the BRW result is correct, we must then conclude
t , ) o that either the BGS conjecture is false for many-body sys-
where thea's anda’s are creation and annihilation opera- (ems; or that the two-body random-interaction model does
tors, and theV's are (for the case of the unitary ensemble correctly capture this aspect of the physics of these sys-
complex numbers that obey tems.
In this paper we will show that there is in fact a gap in the
BRW proof, and that this gap is not easily bridged. Thus, we

. ] ) _will argue, Wigner-Dyson statistics for these models is still
Each independent component is a Gaussian random variablg open possibility.

\V2 oo o =\* oo . (2

Jir e IPEIEERERE. e Vi i e in

with mean zero and varianas, , In Sec. Il we review and expand the analysis of BRW
[1,2], and explain how their proof of Poissonian spectral sta-
le ..... PRI iiji ..... Jdl i tistics might fail to hold. In Sec. Il we specialize in the case
5 k=1 (where the detailed analysis simplifieend show that,
VokS it Ol Oigil e Sl (3 within the context of the binary correlation method used by

BRW, the proof does break down in the manner suggested in
The overbar denotes averaging over the ensembleygnd ~ Sec. Il. However, the binary correlation method is not exact,
a normalization constant that sets the energy scale. In thand the appropriate conclusion is that one must go beyond
paper, for pedagogical simplicity, we will restrict our atten- this approximation to obtain a reliable evaluation of the spec-
tion to the unitary ensemble. tral statistics of these models. We elaborate on this further in
These models can be viewed as caricatures of complekec. IV.
systems of interacting particles, such as nuclei, multielectron

atoms, or quantum dots. The most physically interesting case II. THE BINARY CORRELATION METHOD
is k=2: H, can be thought of as representing two-body o
interactions among a set af particles occupying degen- We begin with the resolvent

erate single-particle states.

In their work, BRW analyzed the spectral statistics of
these models, and found that they are Poissoniarf fom
>Kk. This is something of a surprise; numerical simulations
of thek=2 model have generally found Wigner-Dyson spec-where tr denotes the normalized trace rl) over states of
tral statistics(see, e.g.[7,8]). Even more surprising, the m particles. BRW compute the connected correlation func-
proof of this offered by BRW extends trivially to the case of tion

_ 1
G(Z)—trﬁ, (4)
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R(21,2,)=G(2,)G(2,) — G(z,) G(2,). (5) BRW show thafT,~ ¢ %" for £>m>k, and so conclude
thatR(z;,z,) vanishes in thé€ — o limit; this is indicative of
Then, since the density of statgéE) is given by Poissonian spectral statistics. However, this conclusion is

suspect if we do not first understand the convergence prop-

1 . . erties of the series in E¢10). To see why this is necessary,
p(B)=5 FIG(E=ie)=G(E+ie)], ®  consider the mathematical example
whereE is real ande is a positive infinitesimal, we have = o
=2 (13)
p(E1)p(Ez) —p(E1) p(Ey) A=1 €
=W[R(ZI,Z§)+R(ZI,22+)—R(ZI,ZZ+) where ¢ is a positive integer. Clearly, in the limit— o,
each term of this series vanishes, and so it is tempting to
-R(z; ,2,)], (7) conclude thatS=0. However, we can evaluat® by Borel
summation. We use
where z"=E;*is. Thus, we can extract the connected
density-density correlatiofwhich provides information on o
the spectral statisti¢sfrom R(z;,z,), provided we can n! :f dte”'t" (14
evaluateR(z,;,z,) with bothz; andz, on either side of the 0
real axis.
To computeR(z;,z,), BRW expand in powers dfl, in Eq. (13) and do the sum to get
G(Zl)G(Zz):i i ;tr(H')tr(HS)- 8 " et
= & Zr1+12§+1 S= fo dte —t (15

The ensemble average vanishes untess is even, and, in

this case, Wick’s theorem can be used to express it as a sufhis integral is not defined for positive reél We could
over (r+s—1)!! pairwise contractions of’s. Each contrac- attempt to define it by analytic continuation, but there would
tion that occurs inside one of the two traces can be sH@yn still be an ambiguity, corresponding to whether the positive
to yield a factor ofv3, Ay, whereA, is a calculable number real axis is approached from above or below. More impor-
(given below, provided the total number of these contrac-tantly, in our case is a positive integer that counts the
tions is much less thafi. This is the essence of the binary humber of single particle states; therefore it does not seem to
correlation method, introduced by Mon and Freiih(see =~ Make sense to analytically continue to compfekOur con-

also[12]). It is convenient to choose so thatv A =1; clusion in this case would be th&tis simply not defined by
then we have the Borel procedure. We wish to examine whether the same

problem arises for the series in E3.0).
The series fog,(z) in Eq.(11), on the other hand, can be
(99  defined for anyz with Imz+0 by Borel summation followed
by analytic continuation. To demonstrate this, we begin with

It remains to count the total number of contractions withinthe€ combinatoric identities
each trace, and to evaluate the contractions across the two

m\({€—m+k
k k

UOkZZAk:(

traces. Performing the first task yielf2] n+2p\ (n+2p)! (2p)!
=———— and (2p—1)!'= ,
o n n!(2p)! 2Pp!

R(21,22)= 2 9n(22)0n(22) T, (10 (16

where and so
o (2p—1)!! (n+2p 1 & 1\P(n+2p)!

g“(z)_pgo S2pinil | (11) On(2)= ) pZO (ﬁ Tl 17)

and
We now use Eq(14) with n—n+2p to get
T,=tr(HMtr(H"); (12

the double overbar means that all contraction&/sfare to 10ne could raise the same objection to dimensional regularization
involve oneV from each of the two traces. Equatiofi€)— in quantum field theory, but there the results can be verified by a
(12) are equivalent to Eq68) of [2]. variety of different and more physically motivated schemes.
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n

s ), e (2—);

gl"l |

= n|Zn+l

f dtettnet’’22, (18)

n+1

The integral converges provided R&<0. This condition is

1
17 We now

rotate thet contour in the complex plane so that it runs
along a straight line from zero to complex infinity at an angle
of ¢ relative to the positive real axis. Then we setre'?,
wherer is real and runs from zero to infinity. We now have

satisfied forz=+i|z|e'® with —im<p<+

el (N+1)6

gn(z) =

n!(ii)n+1|z|n+1ei(n+l)¢

X fo dre— e’ me=7122?, (19

where the phase in the numerator of the prefactor come

from the change of variable— re'?’, and the phase in the
denominator comes frore= *i|z|e'®. We now change the
integration variable tai= 7/|z| to get

i n+1
gn(Z):—( v f dueuze’yng—u?2

_(Ii)n+l

ol (20

f due—:izuune—UZ/Z.
0

This integral converges for ai, and so constitutes an ana-
lytic continuation of Eq(18); the = symbol should be inter-

preted as the sign of Im Thusg,(z) is discontinuous across
the real axis, and if we take=z"=E=*ie, we get

n+1 5
gn(zi)z—nl j due*Buyne=u7?, (21)

We also note that, from our Eq11) and Eq.(65) of [2],

G(2)=00(2). (22
Then, from Eq.6) and Eq.(21), we have
— 1
P(E)=5—-190(2)~go(z")]
1 (= _ _
:Efo du(eflEu_i_eﬂEU)efuZ/Z
=—— exp(—E?/2). (23

V27

This is the classic result of Mon and Freng¢B]: the
ensemble-averaged density of states of kieody random-
interaction model is Gaussian.

Returning toR(z,;,z,), we use Eqs(10) and(20) to get
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dudyel (Eu= Ezv)e—(u2+v2)/2|:( Tw),

(24)

R(z) ,z,)= If

0

where we have defined

n=1

Th. (25

(n')2

We see that, in order for bofR(z; ,z;) andR(z; ,z,) to be
well defined,F(y) must be free of singularities on the real
axis (positive or negative Only then can we perform the
integrals overu andv in Eq. (24) for both R(z; ,z,) and
R(z; ,z,) without further(arbitrary regularization.

To see whether or not this obstacle arises, we must evalu-
ate T,,. Here we have an immediate difficulty. We have al-
ready invoked the binary correlation approximation in Eq.
(112); the terms in this series receive corrections when the
summation indexp becomes comparable G and there is

o straightforward way to calculate these corrections exactly.

imilarly, in Sec. lll we will evaluatel, (for k=1), but our
method will requiren<¢. It is therefore unsuitable for reli-
ably determining the asymptotic behavior of the series in Eq.
(25). still, it is worthwhile to see whether or not the problem
of a singularity on the real axis arises within this approxima-
tion. We therefore turn to the calculation ©f, for k=1.

Ill. ANALYSIS FOR k=1

We specialize in the cade=1 (and drop the correspond-
ing “1” subscripts):

H= E Vjiaa;, (26)

with

V VJ = U(2)5ji’5ij’- (27)

Of course, we already know the answer for this case: the
spectral statistics are Poissonian, because the spectrum sim-
ply consists of the linear sum of thma single-particle ener-
gies that are obtained by diagonalizing th& ¢ Hermitian
matrix V. These single-particle energies obey Wigner-Dyson
statistics, but their sumdor m>1) obey Poisson statistics.
However, the binary correlation method can still be used, and
it is important to see whether or not it gives the correct
answer(or any answer at all

We first introduce some shorthand notation. Llet
={i1, ...ipf andI={jq, ... jn}; let

S -

11

5|Y‘]: '5i i (28)

n‘n

Let P, Q, andR denote permutations of the indices ofl.
Then, from Eq.(3), we can write
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(leil . J i )(V"erlllr/‘):v(z)n; 5|,RJ’5J,R|"
(29
Another useful bit of shorthand is
AjAI =aJTlail~ . 'a;rnain. (30

Thus Eq.(12) becomes

:U(ZJnER: > 5I,RJ’5J,Rl’tr(A§Al)tr(ATIAI’)- (31
191797

The trace is &J(€) invariant operation, and so we must have

t"(A}Aﬂ:EP: Cpypi (32)

for some set of coefficient€p. Substituting this expansion

into Eq. (31), we get

Tn:Uon 2 CPCQ E 01,ry O3,RI"03,p10y QI
13113’

=v3" E CPCQE 01 RQRPI (33

whereR is the inverse oR.
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Next we must evaluat€p . Starting with Eq(32), we set
J=QI and sum ovel to get

}I‘, tr(ALA) =

2 CPEI Son.p!

=> CPfECVC(ap)
P

=Cql". (37)
To get the last line, we used the same lafgargument that
gave us Eq(36).

Now we need to evaluatg, tr(AL,A,). To do so, imagine
rearranging thea™s so that their indices are in the same
order as tha’s, and interleaved among them in the standard
pattern of Eq(30). Sinceaa/ = —ala/, we see that, before
accounting for the presence of thls rearranging tha™'s in
this way will yield a factor of 1)P Passinca'’s through
a’s yields Kronecker deltas, sin@ga/ = —(a/a;— ), but
no possibility of an extra overall minus sign, since the total
number of exchanges af'’'s with a’s is always even. Let us
temporarily ignore the Kronecker deltas. Then, once all the
a'’s have been put next to their partn&s in the standard
pattern, we have, a a;=m. Thus, ignoring the Kronecker
deltas generated by moving'’s pasta’s, we haveCp=
(_ 1)Pmn

For n<¢, most of the Kronecker delta’s can indeed be

The expressiorE, &) py can be evaluated in terms of the neglected; the exception occurs when one of them has two
cycles ofP. Consider, for example, the permutation 2431 ofidentical indices, leading t&;6;; =¢. To account for these
1234; it contains one cycle of length ofsnce 3 remains in dominant Kronecker deltas, we first note that, for a given

its original position, and one cycle of length thrésince 1 is
replaced by 2, 2 is replaced by 4, and 4 is replaced)bi.et
v:(P) denote the number of cycles of lengthin permuta-
tion P; for our example,y;=y3;=1 andy,= y,=0. Since

permutationP, vy,(P) is the number of elements that are
left in the same place by, and these contribute no Kro-

necker deltas. Let(P) be the number of elements that are
moved to the right of their original positions I®; only these

each element of any permutation is in exactly one cycle, w&"’s need to pass through their partrzgs on being returned

have ={_;y.(P)c=n. In £,5 p;, each cycle ofP ulti-
mately results in a factor of;5;;=¢. Thus we have

E 5|‘p|:€26yc(P), (34)
|
and hence

T, = US”P%R CpCol Zc7e(RQRP), (35)

to the standard order. For these, the factormoimust be
replaced bym—¢. Finally, the number of elements that are
moved to the left of their original positions b is n
—v1(P)—r(P), and these contribute no large Kronecker
deltas on being returned to the standard order. Thus we have

Cp=(—1)P¢ " mnPmn= 7P =r(P)(m—¢)r(P) (38)

for n<¢.

Next we notice that the inverse permutati§nhas the
counts of the left- and right-moving elements exchanged.

So far we have made no approximations in our evaluatiorf hus,
of T,,. We now notice that, fof>1, the dominant term on
the right-hand side of Eq35) is the one with the largest

value oncyC(RQ_RP). This occurs Whenyi=n and vy,

Co=(—1)P¢ " m"P)m (P)(m—¢)n=71(P)=1(P)  (3g)

Then, using the fact that{1)" and y,(P) are each invari-

=0 for 2<c<n, which in tm impliesRQRP=1, or Q 4t ynder unitary transformations Bf we have
=RPR. Thus we have B
CﬁRE(_1)P€7nmy1(P)mr(RPR)
Th=v5"¢"2, CeCrpr, (36)

X (m— )"~ 71(P)~r(RPR) (40)

where= denotes equality in the limit of largé. Setting Eqs(38) and (40) into Eq.(36), we get
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To=v2" [m(m—€)]"¢ "

m | 72(P)=r(P)+r(RPR)
) (41)

* e

m—+¢

The convention of Eq.(9) with k=1 yields v3"[m(m
—€)]"=(—1)". Then we can write

T,/ (n)2=¢""M,(f/(1—1)), (42)

wheref =m/{ is the filling fraction, and we have defined the

function

(="
2 (—x)7a(P)- r(P)+r(RPR).

Ma(X)=" o 2 43

Remarkably, it is possible to evaluaté,(x) exactly for ar-

bitrary n without performing the sum over the permutations

P andRin Eqg. (43) explicitly. This calculation is given in the

Appendix. We find thatM(x) is everywhere positive and

convex; it diverges ags—0 andx— +«, and has a mini-
mum betweenx=0 and x=1. While we are not able to
evaluate the asymptotic form o ,(x) analytically, numeri-
cal evaluation reveals that, for large

M, (X)~n\", (44
where \ is a number that depends on if x is real and
positive, so is\. Using Egs.(42) and (44) in Eq. (25), we
find

\yl€

F(y)~ ANyl (45)
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hand,G(z,)G(z,) has negative phases from the first factor
and positive from the second, so cancellations can occur; in
the most straightforward approadthe so-called diagonal
approximation, one simply keeps only those terms with an
exact cancellation. This is adequate for computing the
density-density correlation function at largg,—E,|; for
chaotic systems, it is nonzero, and agrees with the Wigner-
Dyson prediction of random-matrix theory. Thus, for the
k-body random-interaction model, the binary-correlation
method correctly and unambiguously gives Réz; ,z,)

=0, but, as we have argued, formal manipulations of diver-
gent series are not adequate for extending this result to
R(z, ,z,). We have seen explicity how the binary-
correlation approximation fails to give us a series for
R(z; ,z,) that can be evaluated by Borel summation in the
casek=1.

It is important to remember, though, that the binary cor-
relation approximation breaks down precisely where we wish
to apply it: when the number of contractions approaches the
number of single-particle levels. Thus, to reach a firm con-
clusion one way or the other, we are forced to go beyond this
approximation. At the present time, doing so appears to
present a severe challenge to the available technologies.

One of these technologies, also investigated by BRW, is
the supersymmetric sigma moddl4]. BRW found that, at
the tree and one-loop levels, the sigma model predicts
Wigner-Dyson statistics fok<m<¢, with corrections that
go to zero as ¥. Unfortunately, this does not settle the
matter, because this prediction also appliek+dl, where it
is known to be false. One must therefore presume that
higher-loop corrections are important.

Thus the only conclusion that seems completely safe at
this juncture is a disappointing one: the nature of the spectral

which obviously has a singularity on the POSIUVe real axis alstatistics of thek-body random-interaction model remains an

y=+£€/\. Hence the integral in Eq24) for R(z; ,z,) is

unsolved problem.

not well defined. Therefore, we argue, the binary correlation

method fails to give us the density-density correlation func-

tion.

IV. CONCLUSIONS

It is significant that, while we cannot compu®éz; ,z,)
by the binary correlation method, wean compute
R(z{ ,z5). In this case(at least fork=1), there is no sin-

gularity in the integrand in Eq24), and so we can complete

the integrals, take thef—oo limit, and conclude that
R(z{ ,2;)=R(z; ,2,)*

=0. This is consistent with other
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approaches to the computation of this spectral correlation

function. For example, in the periodic-orbit approach to cha-

otic systems, one findsee, e.g.[13])
G(Zi)ZE WpeIiSp/ﬁe—sTp’ (46)
p.o.

wheresS; is the action of the orbitincluding the contribution
of the Maslov phase T, is its period, andw, is the

APPENDIX

We wish to evaluate
(—1)”(n!)2Mn(—X)=;? X'yl(P)—r(P)-%—r(EPR), (Al)

whereP andR are permutations afi elements,y,(P) is the

Gutzwiller weight factor. The key point is that, in the limit of number of elements left in their original positions Byand

small #, G(z;)G(z;) contains only large>2) phases,

r(P) is the number of elements that are moved to the right of

and so summing the orbits should give zero. On the othetheir original positions byP. For small values ofi, we can
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perform this sum overn(!)? terms explicitly. We are, how- R,(x)=1,
ever, interested in its behavior for largeand so this strat-
egy quickly becomes untenable. Ry(X)=1+X,

Let us warm up by computing

Ra(X)=1+4x+x2,
Ra(x)= 2 x'®). (A2)
: Ru(X) =1+ 11x+ 11x%+ %3,

Let N, , be the number of permutations of elements in

which exactlyr of the elements move to the right. Then Rs(X) =1+ 26x+ 66x2+ 26x3+x*. (A8)
n-1 Also, it turns out to be convenient later if we adopt the con-
R,(X)= EO Np X" (A3)  vention
=
Ro(x) = 1/x. (A9)

We can computd\, , by the method of inclusion and exclu-

sion[15]. Let S, ; be the number of permutations in whiah . PR i

cycle clas<, specified by the numberg. of cycles of length

n—r r+k c, with =}_,cy.=n. The permutatiorﬁPR belongs to the
Ny = Z (— 1) K Shr+k- (A4)  same clasgsince class is preserved by unitary transforma-
k=0 tions), and furthermore each permutation in the class appears

, , . equally often aRR is varied over the group. Thus
To obtainS, , let us first count the number of permutations

in whichr specificelements move to the right, irrespective of _ ni

what happens to the remaining elements. Actually, since we 2 x'(RPR) — 2 x'(P), (A10)
conventionally count from left to right, it is slightly more R Ne fec

calculationally convenient to count the number of permuta-

tions that move specific elements to the left, rather than to where

the right; clearly, by left-right symmetry, the choice of direc-

tion is irrelevant to the count. So, Iétml be the number of n!
permutations in which thé!" element moves to the left. Ne= (ALD)
There ard,;— 1 possible places for th'éih element to go, and H c’ey.!
(n—1)! permutations of the remaining elements; thus c=t
Ani =(i1—1)(n-1)!. (A5) is the number of permutations in clag$§15]. Let'NC,r be the

number of permutations of the elements in a particular cycle
Similarly, let A, ~with i;<---<i, be the number of of lengthc in 'wh|ch exactlyr of the eIgr_nents in this cyple
_ R R move to the right. A cycle can be specified by an ordering of
permutations in which all the named elements move to the.s clements with the smallest first; thus a cycle of length

left; by a similar argument, we have can be mapped to a permutation of the remairdrgl ele-
ments. This mapping can be shown to impﬂcyr

. = (i=D(ir=2) (i — —n)!
Aniy, .0 == D(i2=2)- - (i;=r)(n=r)L. (AB) ~N¢_q,;. Thus,

Now S, , is given by the sum over all possible values of the c-1 c-1 c-2
I’s of An,il, i 2 Nc,rxr: 2 Nc—l,r—lxr: E Nc—l,sxs+1:XRc—1(X)-

r=1 r=1 s=0
n i3—l i2—l (A12)

Sn,r:,z 2 2 An,il,...,ir .

i=r i=2i1=1 The convention of Eq(A9) correctly treats the case=1.

n is—1 i,—1 _Also, the number of ways of assigning elements to the cycles

=(n—-1)! >, (ir—r>~-22<i2—2>21<i1—1) IS

i=r ir= i1=

n—r B i N, = n! (A13)
== i 2 22 (A7) AT '
ir=0 j2=0  j1=0 ]___[ (ch)7ey!
c=1
where, in the last lingj,=i,—a. EquationgA3), (A4), and
(A7) give usR,(x). The first few of these polynomials are Thus
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> XP =N xRe_1(x)

PHYSICAL REVIEW E 66, 046138 (2002

(= 1)"(ND2M (= x) = > x71(P)=r(P)+1(RPR)
P,R

PeC cycles
n
X X) |7
—NAH [XRe10017e=nt T — R°C,1( ) =3 3 O3 @R,
(A14) (A16)
The sum overR is given by Eq_.(A15), and the sum over
Therefore, by Eqs(A10), (A11), and (A14), PeC is given by Eq.(Al4) with xRC,1(>_<) repl_aced by
x%171R._;(1/x). The sum over classes is equivalent to a
sum over all possible values of eagh with the constraint
(x)]” that=]_,cy.=n. This is most easily treated via a generating
2 r(RPR) n! H (C 1)| (A15) function
Z)= M n Al7
Now we can write Mx.2) ngo n(X)2 (ALD)
Then, from Eqs(A14)—(Al7) we have
o 11 1 [(=2D%(=x) %R 1(—X)R:_1(— 1) |
M(X,2)= —
2= 2 1125 cl(c—1)!
o (=2(=X)%R_1(—X)Re_4(—1/)
= ex ;1 =D . (A18)

The expansion of EqA18) in powers ofz yields M ,(x) as
the coefficient ofz". The results for smaih are

My (x) =X,
M, (X)=(1+x2)/2,
M(x)=(1x— 2+ 7x+2x%)/(2!31),

M 4(X) = (1/x%— 8/x+ 48— 32x+ 49x>+ 6x*)/(3141).
(A19)

We have verified this procedure for computiiy,(x) up

This limiting form for M,(x) would lead to convergence of
the series in Eq(25) for all y, with no singularities on the
real axis, thus apparently validating the BRW result. How-
ever, including the first correction yields

Mp(x)=x"""2[1—(2"=2n)x+---]/(n!(n—1)!),
(A20)

and so we see that we must haw&2 ™" before the first term
alone is an adequate approximation. Instead, for the purpose
of determining the convergence of the series in 8), we
should take the limit of large with x held fixed. We have

not found a way to do this analytically, and so have resorted

throughn=7 by comparison with the brute-force summationto numerical methods. For a given valuexpfive can evalu-

of the right-hand side of EqA1).

It is tempting to conclude from Eq4A19) that, in the limit
of smallx, we can takevl,(x) =x"(""2)/(n!(n—1)!). Small
x corresponds to small filling fractiof=m/¢, which is what
we want if we are interested in the limfit—c with m fixed.

ateM,(x) up to arounch=500 from Eq.(A18) in a reason-
able amount of computation time. We find, fae=0.001,
0.01, 0.1, 0.5, and 1.0, that the behavior Mf,(x) for n
>10 is very well fit by Eq.(44), with A=17.4, 3.28, 0.797,
0.435, and 0.405, respectively.
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